Analytic Approximation of Solutions of Parabolic Partial Differential Equations with Variable Coefficients
نویسندگان
چکیده
منابع مشابه
Real Analytic Solutions of Parabolic Equations with Time-measurable Coefficients
We use Bernstein’s technique to show that for any fixed t, strong solutions u(t, x) of the uniformly parabolic equation Lu := aij (t)uxixj−ut = 0 in Q are real analytic in Q(t) = {x : (t, x) ∈ Q}. Here, Q ⊂ Rd+1 is a bounded domain and the coefficients aij(t) are measurable. We also use Bernstein’s technique to obtain interior estimates for pure second derivatives of solutions of the fully nonl...
متن کاملUnique Continuation and Complexity of Solutions to Parabolic Partial Differential Equations with Gevrey Coefficients
In this paper, we provide a quantitative estimate of unique continuation (doubling property) for higher-order parabolic partial differential equations with non-analytic Gevrey coefficients. Also, a new upper bound is given on the number of zeros for the solutions with a polynomial dependence on the coefficients.
متن کاملNumerical Approximation of Parabolic Stochastic Partial Differential Equations
The topic of the talk were the time approximation of quasi linear stochastic partial differential equations of parabolic type. The framework were in the setting of stochastic evolution equations. An error bounds for the implicit Euler scheme was given and the stability of the scheme were considered.
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2017
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2017/2947275